Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells.

نویسندگان

  • Semil P Choksi
  • Tony D Southall
  • Torsten Bossing
  • Karin Edoff
  • Elzo de Wit
  • Bettina E Fischer
  • Bas van Steensel
  • Gos Micklem
  • Andrea H Brand
چکیده

Stem cells have the remarkable ability to give rise to both self-renewing and differentiating daughter cells. Drosophila neural stem cells segregate cell-fate determinants from the self-renewing cell to the differentiating daughter at each division. Here, we show that one such determinant, the homeodomain transcription factor Prospero, regulates the choice between stem cell self-renewal and differentiation. We have identified the in vivo targets of Prospero throughout the entire genome. We show that Prospero represses genes required for self-renewal, such as stem cell fate genes and cell-cycle genes. Surprisingly, Prospero is also required to activate genes for terminal differentiation. We further show that in the absence of Prospero, differentiating daughters revert to a stem cell-like fate: they express markers of self-renewal, exhibit increased proliferation, and fail to differentiate. These results define a blueprint for the transition from stem cell self-renewal to terminal differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural stem cell transcriptional networks highlight genes essential for nervous system development

Neural stem cells must strike a balance between self-renewal and multipotency, and differentiation. Identification of the transcriptional networks regulating stem cell division is an essential step in understanding how this balance is achieved. We have shown that the homeodomain transcription factor, Prospero, acts to repress self-renewal and promote differentiation. Among its targets are three...

متن کامل

Isolation, Induction of Neural and Glial Differentiation and Evaluating the Expression of Five Self Renewal Genes in Adult Mouse Neural Stem Cells

Purpose: Isolation, induction of neural and glial differentiation and evaluating the expression of Nucleostemin, ZFX, Hoxb-4, Sox-9 & Bmi-1 self renewal genes in adult mouse neural stem cells. Materials and Methods: Breifly, for isolation of neural stem cells, frontal part of adult mouse brain was minced in PBS and digested by enzyme solution, containing hyaloronidase and trypsin. Isolated cel...

متن کامل

Transient nuclear Prospero induces neural progenitor quiescence

Stem cells can self-renew, differentiate, or enter quiescence. Understanding how stem cells switch between these states is highly relevant for stem cell-based therapeutics. Drosophila neural progenitors (neuroblasts) have been an excellent model for studying self-renewal and differentiation, but quiescence remains poorly understood. In this study, we show that when neuroblasts enter quiescence,...

متن کامل

Genetic mechanisms regulating stem cell self-renewal and differentiation in the central nervous system of Drosophila.

Recent studies using the Drosophila central nervous system as a model have identified key molecules and mechanisms underlying stem cell self-renewal and differentiation. These studies suggest that proteins like Aurora-A, atypical protein kinase C, Prospero and Brain tumor act as key regulators in a tightly coordinated interplay between mitotic spindle orientation and asymmetric protein localiza...

متن کامل

Asymmetric Segregation of the Tumor Suppressor Brat Regulates Self-Renewal in Drosophila Neural Stem Cells

How stem cells generate both differentiating and self-renewing daughter cells is unclear. Here, we show that Drosophila larval neuroblasts-stem cell-like precursors of the adult brain-regulate proliferation by segregating the growth inhibitor Brat and the transcription factor Prospero into only one daughter cell. Like Prospero, Brat binds and cosegregates with the adaptor protein Miranda. In la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Developmental cell

دوره 11 6  شماره 

صفحات  -

تاریخ انتشار 2006